Molecules of Interest HC - toxin

نویسنده

  • Jonathan D. Walton
چکیده

HC-toxin is a cyclic tetrapeptide of structure cyclo(D-Pro-L-Ala-D-Ala-L-Aeo), where Aeo stands for 2-amino-9,10-epoxi-8-oxodecanoic acid. It is a determinant of specificity and virulence in the interaction between the producing fungus, Cochliobolus carbonum, and its host, maize. HC-toxin qualifies as one of the few microbial secondary metabolites whose ecological function in nature is understood. Reaction to C. carbonum and to HC-toxin is controlled in maize by theHm1 and Hm2 loci. These loci encode HC-toxin reductase, which detoxifies HC-toxin by reducing the 8-carbonyl group of Aeo. HC-toxin is an inhibitor of histone deacetylases (HDACs) in many organisms, including plants, insects, and mammals, but why inhibition of HDACs during infection by C. carbonum leads to disease is not understood. The genes for HC-toxin biosynthesis (collectively known as the TOX2 locus) are loosely clustered over >500 kb in C. carbonum. All of the known TOX2 genes are present in multiple, functional copies and are absent from natural toxin non-producing isolates. The central enzyme in HC-toxin biosynthesis is a 570-kDa non-ribosomal synthetase encoded by a 15.7-kb open reading frame. Other genes known to be required for HC-toxin encode alpha and beta subunits of fatty acid synthase, which are presumed to contribute to the synthesis of Aeo; a pathway-specific transcription factor; an efflux carrier; a predicted branched-chain amino acid aminotransferase; and an alanine racemase. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity in Cochliobolus carbonum.

The cyclic tetrapeptide HC-toxin is required for pathogenicity of the filamentous fungus Cochliobolus carbonum on maize. HC-toxin production is controlled by a complex locus, TOX2. The isolation and characterization of a new gene of the TOX2 locus, TOXF, is reported. It is shown that TOXF is specifically required for HC-toxin production and pathogenicity. It is present as two or three copies in...

متن کامل

The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame.

Race 1 of Cochliobolus carbonum, a fungal plant pathogen, owes its exceptional virulence on certain genotypes of maize to the production of HC-toxin, a cyclic tetrapeptide. Production of HC-toxin is controlled by a single known gene, TOX2. Race 1, but not races that do not make HC-toxin, contains two copies of a 22-kilobase (kb) region of chromosomal DNA that is required for HC-toxin biosynthes...

متن کامل

Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin.

Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for th...

متن کامل

A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum.

Race 1 isolates of Cochliobolus carbonum are pathogenic on certain maize lines due to production of a host-selective cyclic tetrapeptide, HC-toxin. Flanking HTS1, which encodes the central enzyme in HC-toxin biosynthesis, a gene was identified and named TOXA. Like HTS1, TOXA occurred only in isolates of the fungus that make HC-toxin and was present as two linked copies in most toxin-producing i...

متن کامل

A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis.

The cyclic tetrapeptide HC-toxin is an essential virulence determinant for the plant pathogenic fungus Cochliobolus carbonum and an inhibitor of histone deacetylase. The major form of HC-toxin contains the D-isomers of Ala and Pro. The non-ribosomal peptide synthetase that synthesizes HC-toxin has only one epimerizing domain for conversion of L-Pro to D-Pro; the source of D-Ala has remained unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006